Research on Industrial Chain Business Credit Risk Assessment Based on the CoVaR Model

Authors

  • Yi Feng Higher Education Press, China Author
  • Yunqi Zhang Central University of Finance and Economics, China Author
  • Ranchen Geng Central University of Finance and Economics, China Author

DOI:

https://doi.org/10.63522/jabbs.102011

Keywords:

Business credit; Credit value chain; Industrial chain; CoVaR; Risk management

Abstract

In the context of the rapid development of industrial chain finance, traditional static and isolated credit risk assessment methods fail to capture the dynamic and systemic nature of credit risk propagation within industrial chains. This paper focuses on the evaluation and control of credit risk in the business credit value chain. Building on VaR and CoVaR models, it proposes a systemic credit risk quantification framework, further incorporating a LASSO-CoVaR approach to identify credit risk spillovers and marginal effects across interconnected firms. Using the pig industry chain led by Muyuan Foods Co., Ltd as a case study , the paper constructs a credit network and measures topological indicators such as in-degree, out-degree, closeness centrality, betweenness centrality, and eigenvector centrality. Empirical analysis confirms that the structural embeddedness of firms within the credit network significantly influences their risk exposure and systemic transmission potential. Based on the findings, the paper proposes a three-pronged risk mitigation strategy focusing on risk source identification, disruption of transmission paths, and coordinated credit governance. This offers both theoretical insights and practical guidance for financial institutions engaged in credit allocation and risk control within the evolving landscape of industrial chain finance.

References

Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. https://doi.org/10.1016/j.eswa.2013.12.003 DOI: https://doi.org/10.1016/j.eswa.2013.12.003

AdrIan, T., & BrunnermeIer, M. K. (2008). CoVaR: A method for macroprudential regulation. Federal Reserve Bank of New York Staff Report, 348. https://www.newyorkfed.org/research/staff_reports/sr348.html

Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The Quarterly Review of Economics and Finance, 48(4), 733-755. https://doi.org/10.1016/j.qref.2007.04.001 DOI: https://doi.org/10.1016/j.qref.2007.04.001

Beaver, W. H. (1968). Alternative accounting measures as predictors of failure. The Accounting Review, 43(1), 113-122. https://www.jstor.org/stable/244122

Belloni, A., & Chernozhukov, V. (2011). ℓ1-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics, Ann. Statist. 39(1), 82-130. https://doi.org/10.1214/10-AOS827 DOI: https://doi.org/10.1214/10-AOS827

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018 DOI: https://doi.org/10.1023/A:1022627411411

De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760-772. https://doi.org/10.1016/j.ejor.2018.02.009 DOI: https://doi.org/10.1016/j.ejor.2018.02.009

Feng, Y., Li, R., Sudjianto, A., & Zhang, Y. (2010). Robust neural network with applications to credit portfolio data analysis. Statistics and Its Interface, 3(4), 437. https://dx.doi.org/10.4310/SII.2010.v3.n4.a2 DOI: https://doi.org/10.4310/SII.2010.v3.n4.a2

Fernandes, G. B., & Artes, R.(2016). Spatial dependence in credit risk and its improvement in credit scoring. European Journal of Operational Research, 249(2), 517-524. https://doi.org/10.1016/j.ejor.2015.07.013 DOI: https://doi.org/10.1016/j.ejor.2015.07.013

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

García, V., Marqués, A. I., & Sánchez, J. S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88-101. https://doi.org/10.1016/j.inffus.2018.07.004 DOI: https://doi.org/10.1016/j.inffus.2018.07.004

Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247. https://doi.org/10.1016/j.ejor.2014.08.016 DOI: https://doi.org/10.1016/j.ejor.2014.08.016

Kim, K. J., & Ahn, H. (2012). A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers & Operations Research, 39(8), 1800-1811. https://doi.org/10.1016/j.cor.2011.06.023 DOI: https://doi.org/10.1016/j.cor.2011.06.023

Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838-846. https://doi.org/10.1016/j.ejor.2009.03.036 DOI: https://doi.org/10.1016/j.ejor.2009.03.036

Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 33-50. https://www.jstor.org/stable/1913643 DOI: https://doi.org/10.2307/1913643

Kwak, W., Shi, Y., & Kou, G. (2012). Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach. Review of Quantitative Finance and Accounting, 38(4), 441-453. https://doi.org/10.1007/s11156-011-0238-z DOI: https://doi.org/10.1007/s11156-011-0238-z

Li, B., Xiao, B., & Yang, Y. (2021). Strengthen credit scoring system of small and micro businesses with soft information: Analysis and comparison based on neural network models. Journal of Intelligent & Fuzzy Systems, 40(3), 4257-4274. https://doi.org/10.3233/JIFS-200866 DOI: https://doi.org/10.3233/JIFS-200866

Maldonado, S., Bravo, C., López, J., & Pérez, J. (2017). Integrated framework for profit-based feature selection and SVM classification in credit scoring. Decision Support Systems, 104, 113-121. https://doi.org/10.1016/j.dss.2017.10.007 DOI: https://doi.org/10.1016/j.dss.2017.10.007

Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42(10), 4621-4631. https://doi.org/10.1016/j.eswa.2015.02.001 DOI: https://doi.org/10.1016/j.eswa.2015.02.001

Morgan, J.P. (1996). Riskmetrics: Technical Document. Morgan Guaranty Trust Company of New York. https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a

Niu, K., Zhang, Z., Liu, Y., & Li, R. (2020). Resampling ensemble model based on data distribution for imbalanced credit risk evaluation in P2P lending. Information Sciences, 536, 120-134. https://doi.org/10.1016/j.ins.2020.05.040 DOI: https://doi.org/10.1016/j.ins.2020.05.040

Oreski, S., & Oreski, G. (2014).Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Systems with Applications, 41(4), 2052-2064. https://doi.org/10.1016/j.eswa.2013.09.004 DOI: https://doi.org/10.1016/j.eswa.2013.09.004

Salchenberger, L. M., Cinar, E. M., & Lash, N. A. (1992). Neural networks: A new tool for predicting thrift failures. Decision Sciences, 23(4), 899-916. https://doi.org/10.1111/j.1540-5915.1992.tb00425.x DOI: https://doi.org/10.1111/j.1540-5915.1992.tb00425.x

Takeuchi, I., Le, Q. V., Sears, T. D., Smola, A. J., & Williams, C. (2006). Nonparametric Quantile Estimation. Journal of Machine Learning Research, 7(45), 1231-1264. http://www.jmlr.org/papers/v7/takeuchi06a.html

Taylor, J. W. (2000). A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal of Forecasting, 19(4), 299-311. https://doi.org/10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V DOI: https://doi.org/10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.3.CO;2-M

Taylor, J. W. (2008). Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of Financial Econometrics, 6(3), 382-406. https://doi.org/10.1093/jjfinec/nbn007 DOI: https://doi.org/10.1093/jjfinec/nbn007

Tobias, A., & Brunnermeier, M. K. (2016). CoVaR. The American Economic Review, 106(7),1705-1741. https://doi.org/10.1257/aer.20120555 DOI: https://doi.org/10.1257/aer.20120555

Wang, G., & Ma, J. (2011). Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications, 38(11), 13871-13878. https://doi.org/10.1016/j.eswa.2011.04.191 DOI: https://doi.org/10.1016/j.eswa.2011.04.191

White, H. (1992). Nonparametric estimation of conditional quantiles using neural networks. Springer New York, 1, 190-199. https://doi.org/10.1007/978-1-4612-2856-1_25 DOI: https://doi.org/10.1007/978-1-4612-2856-1_25

Wiginton, J. C. (1980). A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis, 15(3), 757-770. https://doi.org/10.2307/2330408 DOI: https://doi.org/10.2307/2330408

Xu, Q., Li, M., Jiang, C., & He, Y. (2019). Interconnectedness and systemic risk network of Chinese financial institutions: A LASSO-CoVaR approach. Physica A: Statistical Mechanics and Its Applications, 534, 122173. https://doi.org/10.1016/j.physa.2019.122173 DOI: https://doi.org/10.1016/j.physa.2019.122173

Yu, L., Yang, Z., & Tang, L. (2016). A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment. Flexible Services and Manufacturing Journal, 28, 576-592. https://doi. org/10.1007/s10696-015-9226-2 DOI: https://doi.org/10.1007/s10696-015-9226-2

Zhang, W., Lu, Y., & Liu, Y. (2018). The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application. Systems Engineering–Theory & Practice, 38(10), 2466–2478. https://doi.org/10.12011/1000-6788(2018)10-2466-13

Zhang, W., Yang, D., Zhang, S., Ablanedo‑Rosas, J. H., Wu, X., & Lou, Y. (2021). A novel multi‑stage ensemble model with enhanced outlier adaptation for credit scoring. Expert Systems with Applications, 165, 113872. https://doi.org/10.1016/j.eswa.2020.113872 DOI: https://doi.org/10.1016/j.eswa.2020.113872

Zhang, Z., He, J., Gao, G., & Tian, Y. (2019). Sparse multi-criteria optimization classifier for credit risk evaluation. Soft Computing, 23(9), 3053-3066. https://doi.org/10.1007/s00500-017-2953-4 DOI: https://doi.org/10.1007/s00500-017-2953-4

Zhu, Y., Xie, C., Wang, G. J., & Yan, X. G. (2017). Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Computing and Applications, 28, 41-50. https://doi.org/10.1007/s00521-016-2304-x DOI: https://doi.org/10.1007/s00521-016-2304-x

Zhu, Y., Zhou, L., Xie, C., Wang, G. J., & Nguyen, T. V. (2019). Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211, 22-33. https://doi.org/10.1016/j.ijpe.2019.01.032 DOI: https://doi.org/10.1016/j.ijpe.2019.01.032

Downloads

Published

2025-12-04

Issue

Section

Articles

How to Cite

FENG, Y., ZHANG, Y., & GENG, R. (2025). Research on Industrial Chain Business Credit Risk Assessment Based on the CoVaR Model. Journal of Applied Business & Behavioral Sciences, 1(2), 210-231. https://doi.org/10.63522/jabbs.102011