Research on Industrial Chain Business Credit Risk Assessment Based on the CoVaR Model
DOI:
https://doi.org/10.63522/jabbs.102011Keywords:
Business credit; Credit value chain; Industrial chain; CoVaR; Risk managementAbstract
In the context of the rapid development of industrial chain finance, traditional static and isolated credit risk assessment methods fail to capture the dynamic and systemic nature of credit risk propagation within industrial chains. This paper focuses on the evaluation and control of credit risk in the business credit value chain. Building on VaR and CoVaR models, it proposes a systemic credit risk quantification framework, further incorporating a LASSO-CoVaR approach to identify credit risk spillovers and marginal effects across interconnected firms. Using the pig industry chain led by Muyuan Foods Co., Ltd as a case study , the paper constructs a credit network and measures topological indicators such as in-degree, out-degree, closeness centrality, betweenness centrality, and eigenvector centrality. Empirical analysis confirms that the structural embeddedness of firms within the credit network significantly influences their risk exposure and systemic transmission potential. Based on the findings, the paper proposes a three-pronged risk mitigation strategy focusing on risk source identification, disruption of transmission paths, and coordinated credit governance. This offers both theoretical insights and practical guidance for financial institutions engaged in credit allocation and risk control within the evolving landscape of industrial chain finance.
References
Abellán, J., & Mantas, C. J. (2014). Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 41(8), 3825-3830. https://doi.org/10.1016/j.eswa.2013.12.003 DOI: https://doi.org/10.1016/j.eswa.2013.12.003
AdrIan, T., & BrunnermeIer, M. K. (2008). CoVaR: A method for macroprudential regulation. Federal Reserve Bank of New York Staff Report, 348. https://www.newyorkfed.org/research/staff_reports/sr348.html
Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The Quarterly Review of Economics and Finance, 48(4), 733-755. https://doi.org/10.1016/j.qref.2007.04.001 DOI: https://doi.org/10.1016/j.qref.2007.04.001
Beaver, W. H. (1968). Alternative accounting measures as predictors of failure. The Accounting Review, 43(1), 113-122. https://www.jstor.org/stable/244122
Belloni, A., & Chernozhukov, V. (2011). ℓ1-penalized quantile regression in high-dimensional sparse models. The Annals of Statistics, Ann. Statist. 39(1), 82-130. https://doi.org/10.1214/10-AOS827 DOI: https://doi.org/10.1214/10-AOS827
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018 DOI: https://doi.org/10.1023/A:1022627411411
De Caigny, A., Coussement, K., & De Bock, K. W. (2018). A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees. European Journal of Operational Research, 269(2), 760-772. https://doi.org/10.1016/j.ejor.2018.02.009 DOI: https://doi.org/10.1016/j.ejor.2018.02.009
Feng, Y., Li, R., Sudjianto, A., & Zhang, Y. (2010). Robust neural network with applications to credit portfolio data analysis. Statistics and Its Interface, 3(4), 437. https://dx.doi.org/10.4310/SII.2010.v3.n4.a2 DOI: https://doi.org/10.4310/SII.2010.v3.n4.a2
Fernandes, G. B., & Artes, R.(2016). Spatial dependence in credit risk and its improvement in credit scoring. European Journal of Operational Research, 249(2), 517-524. https://doi.org/10.1016/j.ejor.2015.07.013 DOI: https://doi.org/10.1016/j.ejor.2015.07.013
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
García, V., Marqués, A. I., & Sánchez, J. S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88-101. https://doi.org/10.1016/j.inffus.2018.07.004 DOI: https://doi.org/10.1016/j.inffus.2018.07.004
Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed Chinese companies using data mining. European Journal of Operational Research, 241(1), 236-247. https://doi.org/10.1016/j.ejor.2014.08.016 DOI: https://doi.org/10.1016/j.ejor.2014.08.016
Kim, K. J., & Ahn, H. (2012). A corporate credit rating model using multi-class support vector machines with an ordinal pairwise partitioning approach. Computers & Operations Research, 39(8), 1800-1811. https://doi.org/10.1016/j.cor.2011.06.023 DOI: https://doi.org/10.1016/j.cor.2011.06.023
Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838-846. https://doi.org/10.1016/j.ejor.2009.03.036 DOI: https://doi.org/10.1016/j.ejor.2009.03.036
Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 33-50. https://www.jstor.org/stable/1913643 DOI: https://doi.org/10.2307/1913643
Kwak, W., Shi, Y., & Kou, G. (2012). Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach. Review of Quantitative Finance and Accounting, 38(4), 441-453. https://doi.org/10.1007/s11156-011-0238-z DOI: https://doi.org/10.1007/s11156-011-0238-z
Li, B., Xiao, B., & Yang, Y. (2021). Strengthen credit scoring system of small and micro businesses with soft information: Analysis and comparison based on neural network models. Journal of Intelligent & Fuzzy Systems, 40(3), 4257-4274. https://doi.org/10.3233/JIFS-200866 DOI: https://doi.org/10.3233/JIFS-200866
Maldonado, S., Bravo, C., López, J., & Pérez, J. (2017). Integrated framework for profit-based feature selection and SVM classification in credit scoring. Decision Support Systems, 104, 113-121. https://doi.org/10.1016/j.dss.2017.10.007 DOI: https://doi.org/10.1016/j.dss.2017.10.007
Malekipirbazari, M., & Aksakalli, V. (2015). Risk assessment in social lending via random forests. Expert Systems with Applications, 42(10), 4621-4631. https://doi.org/10.1016/j.eswa.2015.02.001 DOI: https://doi.org/10.1016/j.eswa.2015.02.001
Morgan, J.P. (1996). Riskmetrics: Technical Document. Morgan Guaranty Trust Company of New York. https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a
Niu, K., Zhang, Z., Liu, Y., & Li, R. (2020). Resampling ensemble model based on data distribution for imbalanced credit risk evaluation in P2P lending. Information Sciences, 536, 120-134. https://doi.org/10.1016/j.ins.2020.05.040 DOI: https://doi.org/10.1016/j.ins.2020.05.040
Oreski, S., & Oreski, G. (2014).Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Systems with Applications, 41(4), 2052-2064. https://doi.org/10.1016/j.eswa.2013.09.004 DOI: https://doi.org/10.1016/j.eswa.2013.09.004
Salchenberger, L. M., Cinar, E. M., & Lash, N. A. (1992). Neural networks: A new tool for predicting thrift failures. Decision Sciences, 23(4), 899-916. https://doi.org/10.1111/j.1540-5915.1992.tb00425.x DOI: https://doi.org/10.1111/j.1540-5915.1992.tb00425.x
Takeuchi, I., Le, Q. V., Sears, T. D., Smola, A. J., & Williams, C. (2006). Nonparametric Quantile Estimation. Journal of Machine Learning Research, 7(45), 1231-1264. http://www.jmlr.org/papers/v7/takeuchi06a.html
Taylor, J. W. (2000). A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal of Forecasting, 19(4), 299-311. https://doi.org/10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V DOI: https://doi.org/10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.3.CO;2-M
Taylor, J. W. (2008). Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of Financial Econometrics, 6(3), 382-406. https://doi.org/10.1093/jjfinec/nbn007 DOI: https://doi.org/10.1093/jjfinec/nbn007
Tobias, A., & Brunnermeier, M. K. (2016). CoVaR. The American Economic Review, 106(7),1705-1741. https://doi.org/10.1257/aer.20120555 DOI: https://doi.org/10.1257/aer.20120555
Wang, G., & Ma, J. (2011). Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Systems with Applications, 38(11), 13871-13878. https://doi.org/10.1016/j.eswa.2011.04.191 DOI: https://doi.org/10.1016/j.eswa.2011.04.191
White, H. (1992). Nonparametric estimation of conditional quantiles using neural networks. Springer New York, 1, 190-199. https://doi.org/10.1007/978-1-4612-2856-1_25 DOI: https://doi.org/10.1007/978-1-4612-2856-1_25
Wiginton, J. C. (1980). A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis, 15(3), 757-770. https://doi.org/10.2307/2330408 DOI: https://doi.org/10.2307/2330408
Xu, Q., Li, M., Jiang, C., & He, Y. (2019). Interconnectedness and systemic risk network of Chinese financial institutions: A LASSO-CoVaR approach. Physica A: Statistical Mechanics and Its Applications, 534, 122173. https://doi.org/10.1016/j.physa.2019.122173 DOI: https://doi.org/10.1016/j.physa.2019.122173
Yu, L., Yang, Z., & Tang, L. (2016). A novel multistage deep belief network based extreme learning machine ensemble learning paradigm for credit risk assessment. Flexible Services and Manufacturing Journal, 28, 576-592. https://doi. org/10.1007/s10696-015-9226-2 DOI: https://doi.org/10.1007/s10696-015-9226-2
Zhang, W., Lu, Y., & Liu, Y. (2018). The borrowers' credit risk assessment in P2P platform based on fuzzy proximal support vector machine and its application. Systems Engineering–Theory & Practice, 38(10), 2466–2478. https://doi.org/10.12011/1000-6788(2018)10-2466-13
Zhang, W., Yang, D., Zhang, S., Ablanedo‑Rosas, J. H., Wu, X., & Lou, Y. (2021). A novel multi‑stage ensemble model with enhanced outlier adaptation for credit scoring. Expert Systems with Applications, 165, 113872. https://doi.org/10.1016/j.eswa.2020.113872 DOI: https://doi.org/10.1016/j.eswa.2020.113872
Zhang, Z., He, J., Gao, G., & Tian, Y. (2019). Sparse multi-criteria optimization classifier for credit risk evaluation. Soft Computing, 23(9), 3053-3066. https://doi.org/10.1007/s00500-017-2953-4 DOI: https://doi.org/10.1007/s00500-017-2953-4
Zhu, Y., Xie, C., Wang, G. J., & Yan, X. G. (2017). Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Computing and Applications, 28, 41-50. https://doi.org/10.1007/s00521-016-2304-x DOI: https://doi.org/10.1007/s00521-016-2304-x
Zhu, Y., Zhou, L., Xie, C., Wang, G. J., & Nguyen, T. V. (2019). Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach. International Journal of Production Economics, 211, 22-33. https://doi.org/10.1016/j.ijpe.2019.01.032 DOI: https://doi.org/10.1016/j.ijpe.2019.01.032
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yi Feng, Yunqi Zhang, Ranchen Geng (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.