Unveiling Mexican Perspectives on AI Meets Luxury Marketing in Mexico

Authors

  • Xin Song Universidad Anáhuac México Author
  • Julieta Mercado González Universidad Anáhuac México Author
  • Luz Cecilia Revilla Universidad Anáhuac México Author
  • Nicole Goldberg Dalma Universidad Anáhuac México Author

DOI:

https://doi.org/10.63522/jabbs.101001

Keywords:

Artificial Intelligence (AI); Luxury Marketing; Means-Ends Chain (MEC); Zaltman Metaphor Elicitation Technique (ZMET)

Abstract

This study addresses how Artificial Intelligence (AI) redefines luxury marketing by integrating Means-Ends Chain (MEC) theory with Zaltman Metaphor Elicitation Technique (ZMET)-driven insights. To the best of our knowledge, this study pioneers the identification of specific AI attributes (e.g., Informativeness, Innovation) that drive benefits/means (e.g., Facility, Utility, Safety, Satisfaction, Anxiety) to contribute to the value/ends (e.g., Happiness, Empowerment, Lifestyle). It embeds triangulation to address critiques of ZMET’s interpretive subjectivity by grounding metaphors in MEC’s structured hierarchy. We provide a structured understanding of consumer decision-making pathways regarding AI in luxury marketing by Hierarchical Value Maps (HVMs). Further, our follow-up study aims to examine gender differences in consumer value mechanisms by leveraging ZMET to reveal subconscious cognitive structures.

References

Ahn, J., Kim, J., & Sung, Y. (2022). The effect of gender stereotypes on artificial intelligence recommendations. Journal of Business Research, 141, 50-59. https://doi.org/10.1016/j.jbusres.2021.12.007

Akter, S., Michael, K., Uddin, M. R., McCarthy, G., & Rahman, M. (2022). Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 308(1–2), 7–39. https://doi.org/10.1007/s10479-020-03620-w

Al-Haji, Y. K., & Bakar, S. B. (2024). The Impacts of Innovation Attribute, Business Environment, and Risk Management on AI Investment Decisions. Pakistan Journal of Life and Social Sciences, 22(2), 3404–3419. https://doi.org/10.57239/PJLSS-2024-22.2.00250

Allende, M. (2024, October 25). Mexico’s luxury market expands 14% in 2023, led by e-commerce. Mexico Business News. https://mexicobusiness.news/ecommerce/news/mexicos-luxury-market-expands-14-2023-led-e-commerce

AMAI (2018). Niveles Socio Económicos 2018. Asociación Mexicana de Agencias de Investigación de Mercado y Opinión Pública (The Mexican Association of Marketing Research and Public Opinion Agencies). https://www.amai.org/NSE/index.php?queVeo=2018

Bain & Company. (2024, October 3). Luxury and technology: Artificial intelligence's quiet revolution. https://www.bain.com/insights/luxury-and-technology-artificial-intelligences-quiet-revolution/​

Barrios, J. M., Campbell, J. L., Johnson, R. G., & Liu, Y. C. (2024). Artificially Intelligent or Artificially Inflated? Determinants and Informativeness of Corporate AI Disclosures (August 23, 2024). http://dx.doi.org/10.2139/ssrn.5133107

Blas, S. S., Mafe, C. R., Perez, I. P., & Ortega, B. H. (2014). The influence of culture on behavior in the purchase of online tourist products: the case of Spain and Mexico. Revista Innovar, 24(54), 153-166. https://link.gale.com/apps/doc/A439036153/IFME?u=anon~158b7389&sid=googleScholar&xid=9692c87e

Chaing, T., Rau, H., Shiang, W. J., & Chiang, J. L. (2017). Combining zmet and mec in study of user expectations for ideal catering customer service app. In MATEC Web of Conferences (Vol. 119, Article 01025). EDP Sciences. https://doi.org/10.1051/matecconf/201711901025

Chen, C., & Wen, X. (2024). Metaphorical richness: A corpus study of money metaphors in English and Chinese language. Cognitive Linguistic Studies, 11(2), 334-369. https://doi.org/10.1075/cogls.00123.wen

Chen, P. J. (2010). Differences between male and female sport event tourists: A qualitative study. International Journal of Hospitality Management, 29(2), 277-290. https://doi.org/10.1016/j.ijhm.2009.10.007

Chen, Y., Chen, P., & Lin, K. (2012). Gender differences analysis cross-culturally in decision-making styles: Taiwanese and Americans comparison. Journal of International Management Studies, 7(1), 175-182. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2c87cfc9483f6b234414a9e713b32d43c7e34da7

Cheng, Y., & Jiang, H. (2022). Customer–brand relationship in the era of artificial intelligence: understanding the role of chatbot marketing efforts. Journal of Product & Brand Management, 31(2), 252-264. https://doi.org/10.1108/JPBM-05-2020-2907

Chernev, A., Hamilton, R., & Gal, D. (2011). Competing for consumer identity: Limits to self-expression and the perils of lifestyle branding. Journal of Marketing, 75(3), 66-82. https://doi.org/10.1509/jmkg.75.3.66

Christensen, G. L., & Olson, J. C. (2002). Mapping consumers' mental models with ZMET. Psychology & Marketing, 19(6), 477-501. https://doi.org/10.1002/mar.10021

Choi, B. J. (2020). Cultural priming conditions and decision-making on food consumption: Means-end evidence for everyday consumer goods. Journal of Marketing Theory and Practice, 28(4), 403-417. https://doi.org/10.1080/10696679.2020.1772673

Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595. https://doi.org/10.1016/j.jbusres.2018.10.004

Das, P., Basak, A., Vaidya, G., Singh, G., Banik, G., & Majhi, M. (2024). Unveiling Gender Differences in Visual Metaphor Interpretation in Indian Banking Print Advertising. Archives of Design Research, 37(4), 99-116. http://dx.doi.org/10.15187/adr.2024.08.37.4.99

Denzin, N. K., Lincoln, Y. S., & Giardina, M. D. (2006). Disciplining qualitative research. International Journal of Qualitative Studies in Education, 19(6), 769-782. https://doi.org/10.1080/09518390600975990

Euromonitor International. (2024, February 5). Euromonitor International unveils top five global digital consumer trends for 2024. https://www.euromonitor.com/press/press-releases/feb-2024/euromonitor-international-unveils-top-five-global-digital-consumer-trends-for-2024​

Felix, R., Ahmed, Z. U., & Hinck, W. (2013). Gender issues in consumer materialism: The case of Mexico. Journal of Transnational Management, 18(2), 82-100. https://doi.org/10.1080/15475778.2013.782230

Frank, B. (2021). Artificial intelligence-enabled environmental sustainability of products: Marketing benefits and their variation by consumer, location, and product types. Journal of Cleaner Production, 285, 125242. https://doi.org/10.1016/j.jclepro.2020.125242

Gao, L., Li, G., Tsai, F., Gao, C., Zhu, M. and Qu, X. (2023). The impact of artificial intelligence stimuli on customer engagement and value co-creation: the moderating role of customer ability readiness. Journal of Research in Interactive Marketing, 17(2), 317-333. https://doi.org/10.1108/JRIM-10-2021-0260

Gao, Y., & Liu, H. (2023). Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective. Journal of Research in Interactive Marketing, 17(5), 663-680. https://doi.org/10.1108/JRIM-01-2022-0023

Giang, N. T. H., Hai, P. T. T., Tu, N. T. T., & Tan, P. X. (2021). Exploring the readiness for digital transformation in a higher education institution towards industrial revolution 4.0. International Journal of Engineering Pedagogy, 11(2), 4-24. https://doi.org/10.3991/ijep.v11i2.17515

Giang, N. T. P., Duy, N. B. P., Anh, N. H. T., Giang, D. N. T., Triet, D. M., & Tan, T. D. (2025). Factors influencing the intention to use artificial intelligence for online advertising on social networks. Multidisciplinary Science Journal, 7(8), 2025416-2025416. https://10.31893/multiscience.2025416

Gutman, J. (1982). A means-end chain model based on consumer categorization processes. Journal of Marketing, 46(2), 60-72. https://doi.org/10.1177/002224298204600207

Ha, J., & Jang, S. (2012). The effects of dining atmospherics on behavioral intentions through quality perception. Journal of Services Marketing, 26(3), 204-215. https://doi.org/10.1108/08876041211224004

Han, Y. J., Nunes, J. C., & Drèze, X. (2010). Signaling status with luxury goods: The role of brand prominence. Journal of Marketing, 74(4), 15-30. https://doi.org/10.1509/jmkg.74.4.015

Hancock, C., & Foster, C. (2020). Exploring the ZMET methodology in services marketing. Journal of Services Marketing, 34(1), 48-58. https://doi.org/10.1108/JSM-11-2018-0344

Hao, T. (2018). Scientific Prometheanism and the Boundaries of Knowledge: Whither Goes AI? European Review, 26(2), 330-343. https://doi.org/10.1017/S1062798717000710

Holmqvist, J., Ruiz, C. D., & Peñaloza, L. (2020). Moments of luxury: Hedonic escapism as a luxury experience. Journal of Business Research, 116, 503-513. https://doi.org/10.1016/j.jbusres.2019.10.015

Huang, A., Chao, Y., Velasco, E. M., Bilgihan, A., & Wei, W. (2022). When Artificial Intelligence Meets Hospitality and Tourism Industry: An Assessment Framework. Journal of Hospitality and Tourism Insights, 5(5), 1080-1100. https://doi.org/10.1108/JHTI-01-2021-0021

Huber, F., Beckmann, S. C., & Herrmann, A. (2004). Means–end analysis: Does the affective state influence information processing style?. Psychology & Marketing, 21(9), 715-737. https://doi.org/10.1002/mar.20026

Hoffman, D. L., & Novak, T. P. (2018). Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. Journal of Consumer Research, 44(6), 1178-1204. https://doi.org/10.1093/jcr/ucx105

Hofstede, G., Hofstede, G. J. & Minkov, M. (2010). Cultures and Organizations: Software of the Mind (Rev. 3rd ed.). McGraw-Hill.

Iwuanyanwu, C. C., & Igoche, D. A. (2021). Innovation Attributes as Determinants of the Application of Artificial Intelligence: A Proposed Study. In Proceedings of the 2021 Conference on Information Systems Applied Research (Vol. 14, Article 5624). https://proc.conisar.org

Javornik, A., Marder, B., Pizzetti, M., & Warlop, L. (2021). Augmented self - The effects of virtual face augmentation on consumers' self-concept. Journal of Business Research, 130, 170-187. https://doi.org/10.1016/j.jbusres.2021.03.026

Joy, A., Zhu, Y., Peña, C., & Brouard, M. (2022). Digital future of luxury brands: Metaverse, digital fashion, and non‐fungible tokens. Strategic Change, 31(3), 337-343. https://doi.org/10.1002/jsc.2502

Jung, J., Yu, J., Seo, Y., & Ko, E. (2021). Consumer experiences of virtual reality: Insights from VR luxury brand fashion shows. Journal of Business Research, 130, 517-524. https://doi.org/10.1016/j.jbusres.2019.10.038

Kang, H. J., Shin, J. H., & Ponto, K. (2020). How 3D virtual reality stores can shape consumer purchase decisions: The roles of informativeness and playfulness. Journal of Interactive Marketing, 49(1), 70-85. https://doi.org/10.1016/j.intmar.2019.07.002

Kankal, M., & Yüksek, Ö. (2012). Artificial neural network approach for assessing harbor tranquility: The case of Trabzon Yacht Harbor, Turkey. Applied Ocean Research, 38, 23-31. https://doi.org/10.1016/j.apor.2012.05.009

Kanwal, M., Burki, U., Ali, R., & Dahlstrom, R. (2022). Systematic review of gender differences and similarities in online consumers’ shopping behavior. Journal of Consumer Marketing, 39(1), 29-43. https://doi.org/10.1108/JCM-01-2021-4356

Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. Cambridge University Press.

Kovačević, A., & Demić, E. (2024). The impact of gender, seniority, knowledge and interest on attitudes to artificial intelligence. IEEE Access, 12, 129765-129775. 10.1109/ACCESS.2024.3454801

Kretchmar, J. (2011). Gender socialization. In The Editors of Salem Press (Eds.). Sociology reference guide: Gender roles and equality (pp. 41-52). Salem Press.

Kumar, H., Rauschnabel, P. A., Agarwal, M. N., Singh, R. K., & Srivastava, R. (2024). Towards a theoretical framework for augmented reality marketing: A means-end chain perspective on retailing. Information & Management, 61(2024), 103910. https://doi.org/10.1016/j.im.2023.103910

Kummer, T. F., Recker, J., & Bick, M. (2017). Technology-induced anxiety: manifestations, cultural influences, and its effect on the adoption of sensor-based technology in German and Australian hospitals. Information & Management, 54(1), 73-89. https://doi.org/10.1016/j.im.2016.04.002

Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 63, 101410. https://doi.org/10.1016/j.techsoc.2020.101410

Li, Y., & Shin, H. (2021). Should a Luxury Brand's Chatbot Use Emoticons? Advances in Consumer Research, 49, 379-380. https://www.proquest.com/conference-papers-proceedings/should-luxury-brands-chatbot-use-emoticons/docview/3090688538/se-2

Lin, H. W. (2024). Applying means‐end chains theory to understanding psychological cognitive structure of online video sharing platforms: A study of user behavior in TikTok. Journal of Consumer Behaviour, 23(3), 1158-1174. https://doi.org/10.1002/cb.2268

Lin, L., & Yeh, H. (2023). Using ZMET to explore consumers’ cognitive model in virtual reality: Take the tourism experience as an example. Current Issues in Tourism, 26(14), 2250-2264. https://doi.org/10.1080/13683500.2022.2084048

Lopez, A., & Garza, R. (2023). Consumer bias against evaluations received by artificial intelligence: The mediation effect of lack of transparency anxiety. Journal of Research in Interactive Marketing, 17(6), 831-847. https://doi.org/10.1108/JRIM-07-2021-0192

Luri, I., Schau, H. J., & Ghosh, B. (2024). Metaphor-enabled marketplace sentiment analysis. Journal of Marketing Research, 61(3), 496-516. https://doi.org/10.1177/00222437231191526

LUXONOMY. (2024, May 30). This is the Latin American country with the highest growth prospects in luxury. https://luxonomy.net/this-is-the-latin-american-country-with-the-highest-growth-prospects-in-luxury/

Magsamen-Conrad, K., & Dillon, J. M. (2020). Mobile technology adoption across the lifespan: A mixed methods investigation to clarify adoption stages, and the influence of diffusion attributes. Computers in Human Behavior, 112, 106456. https://doi.org/10.1016/j.chb.2020.106456

Meharunisa, S., Almugren, H., Sarabdeen, M., Mabrouk, F., & Kijas, A. M. (2024). The impact of artificial intelligence on women’s empowerment, and work-life balance in Saudi educational institutions. Frontiers in Psychology, 15, 1432541. https://doi.org/10.3389/fpsyg.2024.1432541

Mehta, R. (2020). Gender-based differences in consumer decision-making styles: Implications for marketers. Decision, 47(3), 319-329. https://doi.org/10.1007/s40622-020-00252-8

Mejía Trejo, J. (2021). Digital marketing model innovation and Generation Z as consumer decision-making style. Making predictions with an artificial neural network, in Mexico. Contaduría y Administración, 66(4). https://doi.org/10.22201/fca.24488410e.2021.3258

Mensa, M., & Grow, J. M. (2019). Women creatives and machismo in Mexican advertising. European Review of Latin American and Caribbean Studies/Revista Europea de Estudios Latinoamericanos y del Caribe, (107), 27-53. https://doi.org/10.32992/erlacs.10359

Murillo, E. (2017). Attitudes toward mobile search ads: a study among Mexican millennials. Journal of Research in Interactive Marketing, 11(1), 91-108. https://doi.org/10.1108/JRIM-06-2016-0061

Noh, Y., Ahn, N. Y., & Anderson, A. J. (2023). Do consumers care about human brands?: A case study of using Zaltman Metaphor Elicitation Technique (ZMET) to map two athletes’ engagements in social and political advocacy. European Sport Management Quarterly, 23(6), 1732-1758. https://doi.org/10.1080/16184742.2023.2273351

Oc, Y., Plangger, K., Sands, S., Campbell, C. L., & Pitt, L. (2023). Luxury is what you say: Analyzing electronic word‐of‐mouth marketing of luxury products using artificial intelligence and machine learning. Psychology & Marketing, 40(9), 1704-1719. https://doi.org/10.1002/mar.21831

Oliveira, A. S. D., Souki, G. Q., & Vilas Boas, L. H. D. B. (2024). Organic food-buying intention drivers: a study based on means-end chain theory. British Food Journal, 126(6), 2291-2309. https://doi.org/10.1108/BFJ-08-2023-0767

Padigar, M., Pupovac, L., Sinha, A., & Srivastava, R. (2022). The effect of marketing department power on investor responses to announcements of AI-embedded new product innovations. Journal of the Academy of Marketing Science, 50, 1277-1298. https://doi.org/10.1007/s11747-022-00873-8

Purves, R. S., & Wartmann, F. M. (2023). Characterizing and mapping potential and experienced tranquility: From a state of mind to a cultural ecosystem service. Geography Compass, 17(11), e12726. https://doi.org/10.1111/gec3.12726

Puspasari, N., & Herwiyanti, E. (2021). SME's accounting information in the eyes of bank credit analysts: Exploration with ZMET method. Academic Journal of Interdisciplinary Studies, 10(6), 224-237. https://doi.org/10.36941/ajis-2021-0167

Rondán-Cataluña, F. J., Sanz-Altamira, B., & Peral-Peral, B. (2017). Gender roles in social network sites from generation Y. Journal of Technology Management & Innovation, 12(4), 1-9. https://doi.org/10.4067/S0718-27242017000400001

Rodrigo, P., Khan, H., & Valaei, N. (2023). Country-of-origin effects on consumer cognitive structures and preference for foreign brands among elites. Journal of Fashion Marketing and Management: An International Journal, 28(1), 1-27. https://doi.org/10.1108/JFMM-05-2022-0107

Reynolds, T. J., & Gutman, J. (2001). Laddering theory, method, analysis, and interpretation. In Understanding Consumer Decision Making (pp. 40-79). Psychology Press.

Rosenswig, R. M. (2012). Materialism, mode of production, and a millennium of change in southern Mexico. Journal of Archaeological Method and Theory, 19, 1-48. https://doi.org/10.1007/s10816-010-9101-0

Rzepka, C. (2019). Examining the use of voice assistants: A value-focused thinking approach. In Proceedings of the 25th Americas Conference on Information Systems, Cancun, Mexico. AMCIS 2019 Proceedings 20. https://aisel.aisnet.org/amcis2019/human_computer_interact/hu-man_computer_interact/20

Salinas-Quiroz, F., Rodríguez-Sánchez, F., Cambón, V., Silva, P., Costa, P. A., & Martínez, A. (2022). Parental secure base support and child secure base use in Mexican same-sex families. Interpersona: An International Journal on Personal Relationships, 16(2), 178-199. https://doi.org/10.5964/ijpr.6457

Sankaran, R., & Chakraborty, S. (2021). Why customers make mobile payments? Applying a means-end chain approach. Marketing Intelligence & Planning, 39(1), 109-124. https://doi.org/10.1108/MIP-12-2019-0622

Sanz-Blas, S., Ruiz-Mafé, C., & Perez, I. P. (2014). Key drivers of services website loyalty. The Service Industries Journal, 34(5), 455-475. https://doi.org/10.1080/02642069.2014.871530

Schiavo, G., Businaro, S., & Zancanaro, M. (2024). Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence. Technology in Society, 77, 102537. https://doi.org/10.1016/j.techsoc.2024.102537

Sestino, A. (2024). The challenge of integrating “intelligent” technologies in luxury shopping contexts: The role of brand personality appeal and consumers’ status consumption orientation. Journal of Retailing and Consumer Services, 76, 103488. https://doi.org/10.1016/j.jretconser.2023.103488

Shandilya, E., & Fan, M. (2022, October). Understanding older adults’ perceptions and challenges in using AI-enabled everyday technologies. In Proceedings of the 10th International Symposium of Chinese CHI (pp. 105–116). Association for Computing Machinery. https://doi.org/10.1145/3565698.3565774

Shi, B., Cheng, R., & Robins, R. W. (2024). Investigating the trajectory of Mexican-origin youth’s materialistic values across adolescence and prospective associations with life satisfaction in early adulthood: The role of familism, demographic factors, and parent characteristics. Journal of Personality and Social Psychology, 126(3), 492-510. https://doi.org/10.1037/pspp0000489

Siraj, A., Zhu, Y., Taneja, S., Ali, E., Guo, J., & Chen, X. (2024). Executing marketing through a gender lens: A consumer purchase decision-making study in an emerging economy. Arab Gulf Journal of Scientific Research, 42(4), 1982-2000. https://doi.org/10.1108/AGJSR-02-2023-0064

Song, X., & Bonanni, C. (2024). AI-Driven Business Model: How AI-Powered Try-On Technology Is Refining the Luxury Shopping Experience and Customer Satisfaction. Journal of Theoretical and Applied Electronic Commerce Research, 19, 3067–3087. https://doi.org/10.3390/jtaer19040148

Swan, E. L., Peltier, J. W., & Dahl, A. J. (2024). Artificial intelligence in healthcare: the value co-creation process and influence of other digital health transformations. Journal of Research in Interactive Marketing, 18(1), 109-126. https://doi.org/10.1108/JRIM-09-2022-0293

Tarn, D. D., & Wang, J. (2023). Can data analytics raise marketing agility?-A sense-and-respond perspective. Information & Management, 60(2), 103743. https://doi.org/10.1016/j.im.2022.103743

Teh, C., Phang, C. W., Chong, A. Y. L., & Guo, Z. (2021). Augmented reality in offline retail: Integrating the affordance and means-end chain perspectives. In Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 1613-1622). University of Hawai‘i at Mānoa. https://hdl.handle.net/10125/70807

Varsha, P. S., Akter, S., Kumar, A., Gochhait, S., & Patagundi, B. (2021). The impact of artificial intelligence on branding: a bibliometric analysis (1982-2019). Journal of Global Information Management, 29(4), 221-246. https://doi.org/10.4018/JGIM.20210701.oa10

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Verdugo, G. B., & Ponce, H. R. (2020). Gender Differences in Millennial Consumers of Latin America Associated with Conspicuous Consumption of New Luxury Goods. Global Business Review, 24(2), 229-242. https://doi.org/10.1177/0972150920909002

Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and Design in the Age of Artificial Intelligence. Journal of Product Innovation Management, 37(3), 212-227. https://doi.org/10.1111/jpim.12523

Veselinovic, L., Cinjarevic, M., Turulja, L., & Torlakovic, A. (2025). Let’s climb the ladders of digital game-based learning experience: a means-end chain perspective. Interactive Technology and Smart Education, (ahead-of-print). https://doi.org/10.1108/ITSE-09-2024-0210

Vigneron, F., & Johnson, L. W. (2004). Measuring brand luxury perceptions. The Journal of Brand Management, 11(6), 484-506. https://doi.org/10.1057/palgrave.bm.2540194

Walker, B. A., & Olson, J. C. (1991). Means-end chains: Connecting products with self. Journal of Business Research, 22(2), 111-118. https://doi.org/10.1016/0148-2963(91)90045-Y

Wang, J., Dai, J., Dewancker, B. J., Gao, W., Liu, Z., & Zhou, Y. (2022). Impact of situational environmental education on tourist behavior—a case study of water culture ecological park in China. International Journal of Environmental Research and Public Health, 19(18), 11388. https://doi.org/10.3390/ijerph191811388

Wang, X., & Qiu, X. (2024). The positive effect of artificial intelligence technology transparency on digital endorsers: Based on the theory of mind perception. Journal of Retailing and Consumer Services, 78, 103777. https://doi.org/10.1016/j.jretconser.2024.103777

Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887

Xu, L., & Mehta, R. (2022). Technology devalues luxury? Exploring consumer responses to AI-designed luxury products. Journal of the Academy of Marketing Science, 50(6), 1135-1152. https://doi.org/10.1007/s11747-022-00854-x

Xu, X. Y., Tayyab, S. M. U., Chang, F. K., & Zhao, K. (2021). Hierarchical value-attainment paths of CBEC consumers: a means-end-chain perspective. Internet Research, 31(2), 699-736. https://doi.org/10.1108/INTR-10-2019-0397

Yim, A., Cui, A. P., & Walsh, M. (2024). The role of cuteness on consumer attachment to artificial intelligence agents. Journal of Research in Interactive Marketing, 18(1), 127-141. https://doi.org/10.1108/JRIM-02-2023-0046

Yoo, J., Choe, Y., & Lee, G. (2022). Exploring pilgrimage value by ZMET: The mind of Christian pilgrims. Annals of Tourism Research, 96, 103466. https://doi.org/10.1016/j.annals.2022.103466

Zaltman, G., & Coulter, R. H. (1995). Seeing the voice of the customer: Metaphor-based advertising research. Journal of Advertising Research, 35(4), 35-51. https://www.researchgate.net/profile/Robin-Coulter/publication/235361006_Seeing_the_Voice_of_the_Customer_Metaphor-Based_Advertising_Research/links/55b7675508aed621de045f0a/Seeing-the-Voice-of-the-Customer-Metaphor-Based-Advertising-Research.pdf

Zaltman, G. (1997). Rethinking market research: Putting people back in. Journal of Marketing Research, 34(4), 424-437. https://doi.org/10.1177/002224379703400402

Zaltman, G., & Zaltman, L. H. (2008). Marketing metaphoria: What deep metaphors reveal about the minds of consumers. Harvard Business Press.

Zeng, N., Jiang, L., Vignali, G., & Ryding, D. (2023). Customer interactive experience in luxury retailing: the application of AI-enabled Chatbots in the interactive marketing. In The Palgrave Handbook of Interactive Marketing (pp. 785-805). Springer International Publishing.

Zhang, Z., Xiao, S., Xi, M., Wen, J., & Yang, J. (2024). Curvature index of image samples used to evaluate the interpretability informativeness. Engineering Applications of Artificial Intelligence, 137, 109044. https://doi.org/10.1016/j.engappai.2024.109044

Zimmermann, R., Mora, D., Cirqueira, D., Helfert, M., Bezbradica, M., Werth, D., Weitzl, W. J., Riedl, R., & Auinger, A. (2023). Enhancing brick-and-mortar store shopping experience with an augmented reality shopping assistant application using personalized recommendations and explainable artificial intelligence. Journal of Research in Interactive Marketing, 17(2), 273-298. https://doi.org/10.1108/JRIM-09-2021-0237

Downloads

Published

2025-04-24 — Updated on 2025-05-10

Issue

Section

Articles

How to Cite

Unveiling Mexican Perspectives on AI Meets Luxury Marketing in Mexico. (2025). Journal of Applied Business & Behavioral Sciences, 1(1), 1-32. https://doi.org/10.63522/jabbs.101001